M_2BN_2X (M = Ca, Sr; X = F, Cl): New Halogenide Compounds with Isolated BN_2^{3-} Units

Franziska E. Rohrer and Reinhard Nesper

Inorganic Chemistry Laboratory, ETH-Zürich, Universitätstr. 6, CH-8092 Zürich, Switzerland

Received May 7, 1997; accepted September 12, 1997

The compounds M_2 BN₂X (M = Ca, Sr; X = F, Cl) were synthesized from stoichiometric mixtures of the binary components M_3N_2 , MX_2 , and BN in sealed steel ampoules at 1273 K. All four structures were refined from single crystal data. The isotypic fluorides crystallize in the orthorhombic space group Pnma (No. 62) with a = 9.182(2) Å, b = 3.649(1) Å, c = 9.966(2) Å, Z = 4, and $V = 333.9(1) \text{ Å}^3$ for Ca_2BN_2F and a = 9.891(2) Å, b =3.904(1) Å, c = 10.193(2) Å, Z = 4, and V = 393.6(2) Å³ for Sr₂BN₂F. The structures are built from isolated BN³⁻ anions and $[MM_{3/3}F]$ units. The chlorides, which are related but not isotypic, crystallize in the space group *Pnma* (No. 62) with a =11.657(1) Å, b = 3.891(1) Å, c = 8.965(1) Å, Z = 4, and V =406.6(1) Å³ for Ca₂BN₂Cl and a = 12.408(1) Å, b = 4.161(1) Å, c = 9.170(1) Å, Z = 4, and V = 473.4(1) Å³ for Sr₂BN₂Cl. The structures are built from isolated BN₂³⁻ anions and [M_{3/3}M_{2/2}Cl] units. Calculations of the Madelung parts of lattice energy (MAPLE) and vibration spectra of the compounds are reported. © 1998 Academic Press

INTRODUCTION

The linear nitridoborate anion BN_2^{3-} which is isoelectronic and isostructural to CO₂ is known since the work of Goubeau and Anselmet (1) in 1961. During the past 10 years a series of new salt-like compounds with BN_2^{3-} anions has been synthesized and characterized, most of which contain alkali or alkaline earth metal cations or combinations thereof. Primer ones like Li₃BN₂ (2) and Na₃BN₂ (3) crystallize with monoclinic symmetry while the latter prefer primitive cubic arrangements $Sr_3(BN_2)_2$ (4). Compounds with different cations like $LiM_4(BN_2)_3$ (M = Ca, Sr, Ba, Eu) and $NaBa_4(BN_2)_3$ have cubic crystal structures, as well, but show body centering like $Ca_3(BN_2)_2$ (5–10). LiMgBN₂, however, has a tetragonal unit cell (11, 12). The different structures may be taken as indicators for a large structural variability in such phases. A few examples with the isosteric CBN⁴⁻ anions are known, as well, namely Ca₃CBNCl₂, Sr₃CBNCl₂, and Ca₃CBNBr₂ (13, 14) which constitute the first double salts of 16 electron and halogen anions. They

been synthesized and characterized. The latter is a triple salt containing CBN_2^{4-} , C_2^{2-} , and O^{2-} anions in a complex cubic structure which is related to the garnet structure type (17). We wanted to investigate whether double or triple salts of such kind can in general be obtained by reacting the nitridoborate compounds with halogenide salts. Such reactions seem to open a vast field of novel compounds with a large variety of structural arrangements and of quite different properties. We report here on new double salts of the type $M_2\text{BN}_2X$ (M = Ca, Sr; X = F, Cl) (18, 19).

have orthorhombic symmetry. Recently, combinations like $Ba_4(BN_2)O(12, 15)$ and even $Ca_{15}(CBN)_6(C_2)O(16)$ have

EXPERIMENTAL

The compounds are synthesized from stochiometric amounts of the nitrides M_3N_2 , halogenides MX_2 , and boron nitride. The basic educts are well mixed and heated in stainless steel ampoules to 1273 K. The temperature is kept for 30 h and then lowered to room temperature by 100 K/h. The products are white fine powders which all react with water and diluted mineral acids. Ca₂BN₂F is the only compound which is stable on exposure to air and moisture.

Synthesis at 1423 K (M_2 BN₂F) and 1123 K (M_2 BN₂Cl) yields transparent colorless single crystals of rod-like shape. According to the X-ray powder pattern, phase impurities were not detected. Observed and calculated powder patterns are given in Fig. 1.

The crystal structures were determined by single crystal X-ray diffraction. For all four compounds the systematic absences belong to space groups *Pnma* or *Pna2*. The structure solution did not give any indication for the noncentrosymmetric space group. Table 1 contains the crystal data and the results of the X-ray measurements. The structures were solved by direct methods and refined by the full-matrix least-squares procedure (20). The residual difference electron density did not give indications for further atoms, for split positions, or for statistical occupations. A test for larger voids gave negative results because the smallest distances of the largest voids were too small and the coordination of

FIG. 1. Powder diagrams of M_2BN_2X compounds: (A,B) measured and calculated powder diagrams of Ca_2BN_2F ; (C,D) measured and calculated powder diagrams of Sr_2BN_2F ; (E,F) measured and calculated powder diagrams of Ca_2BN_2Cl ; (G,H) measured and calculated powder diagrams of Sr_2BN_2Cl ; (G,H) measured and calculated powder diagrams of Sr_2BN_2Cl .

such voids was too heterogeneous to make chemical sense $(d_{max}(void) = 2.01 \text{ Å} (Ca_2BN_2F), 2.28 \text{ Å} (Sr_2BN_2F), 2.25 \text{ Å} (Ca_2BN_2Cl), and 2.41 \text{ Å} (Sr_2BN_2Cl) (21)).$ Atomic coordinates and displacement parameters are listed in Table 2. Structure factor tables and further information may be obtained upon request.¹

CRYSTAL STRUCTURES AND DISCUSSION

The Fluorides M_2BN_2F

The crystal structures can best be understood by consideration of the anion coordinations. Basically there is a

¹See NAPS document No. 05434 for 4 pages of supplementary material. Order from NAPS c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163-3513. Remit in advance in U.S. funds only \$7.75 for photocopy or \$5.00 for microfiche. There is a \$15.00 invoicing charge on all orders filled before payment. Outside U.S. and Canada add postage of \$4.50 for the first 20 pages and \$1.00 for each 10 pages of material thereafter, \$1.75 for the first microfiche and \$.50 for each microfiche thereafter. relatively clear separation between tetrahedra of the kind $CaCa_{3/3}F$ which have three vertices in common to form one-dimensional strands along the short orthorhombic *b* axis. One of the calcium atoms (Ca2) connects three tetrahedra, two of which are shifted by 1/2 b and 1b against the other and form a syndiotactic chain of tetrahedra (Fig. 2). The calcium atoms have eight principal neighbors with quite varying distances between 234–302 pm. The cal-

FIG. 2. Structures of M_2BN_2X (23); (A) skew view along b axis of M_2BN_2F , M = Ca, Sr; (B) skew view along c axis of M_2BN_2F , M = Ca, Sr; (C) skew view along b axis of M_2BN_2Cl , M = Ca, Sr; (D) skew view along c axis of M_2BN_2Cl , M = Ca, Sr.

Formula	Ca ₂ BN ₂ F	Sr ₂ BN ₂ F	Ca ₂ BN ₂ Cl	Sr ₂ BN ₂ Cl
Molecular weight (g/mol)	137.98	233.12	154.43	249.52
Space group	Pnma, (No.62)	Pnma, (No.62)	Pnma, (No.62)	<i>Pnma</i> , (No.62)
Volume	333.9(1)	393.6(2)	406.6(1)	473.4(1)
Lattice constants	a = 9.182(2)	a = 9.891(2)	a = 11.657(1)	a = 12.408(1)
	b = 3.649(1)	b = 3.904(1)	b = 3.891(1)	b = 4.161(1)
	c = 9.966(2)	c = 10.193(2)	c = 8.965(1)	c = 9.170(1)
Formula units	4	4	4	4
Density	2.745	3.933	2.523	3.501
Absorption coef. μ [mm ⁻¹]	3.207	26.928	3.250	22.916
Crystal size [mm]	$0.4 \times 0.2 \times 0.15$	$0.3 \times 0.08 \times 0.1$	$0.3 \times 0.1 \times 0.1$	$0.35 \times 0.12 \times 0.1$
Data collection	STOE IPDS	STOE IPDS	STOE IPDS	STOE IPDS
Radiation	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Measuring method	ω - θ -scan	ω - θ -scan	ω - θ -scan	ω - θ -scan
$2\theta_{\rm max}$	56.36	48.4	48.58	48.57
Measured reflexions	2693	2149	3438	2633
Unique reflexions	440	355	365	420
	$R_{\rm int.} = 4.88$	$R_{\rm int.} = 10.59$	$R_{\rm int.} = 10.51$	$R_{\rm int.} = 6.48$
Data used $F^2 > 3\sigma(F^2)$	363	350	362	416
Solution	Direct methods	Direct methods	Direct methods	Direct methods
Refinement method	SHELXL93	SHELXL93	SHELXL93	SHELXL9
Parameters, restrictions	37, 0	34, 0	37, 0	38, 0
R value $[I > 2\sigma(I)]$	$R1 = 3.26^{a}$	$R1 = 5.16^{a}$	$R1 = 4.26^{a}$	$R1 = 2.88^{a}$
	$wR2 = 9.37^{b,c}$	$wR2 = 14.08^{b,c}$	$wR2 = 11.61^{b,c}$	$wR2 = 7.10^{b,c}$
R value for all data	$R1 = 3.26^{a}$	$R1 = 5.43^{a}$	$R1 = 4.46^{a}$	$R1 = 3.20^{a}$
	$wR2 = 9.37^{b,c}$	$wR2 = 14.46^{b,c}$	$wR2 = 11.98^{b,c}$	$wR2 = 7.35^{b,c}$

 TABLE 1

 Crystallographic Data for Ca₂BN₂F, Sr₂BN₂F, Ca₂BN₂Cl, and Sr₂BN₂Cl

$${}^{a}R_{1} = 100x \frac{\sum F_{o}}{\sum F_{o}}.$$

$${}^{b}wR_{2} = 100x \sqrt{\frac{\sum(w(F_{o}^{2} - F_{c}^{2})^{2})}{\sum w(F_{o}^{2})^{2}}}.$$

$${}^{c}w = \frac{1}{\sigma^{2}(F_{o}^{2}) + (g \cdot P)^{2} + k \cdot P)}; \quad P = \frac{\operatorname{Max}(F_{o}^{2}, 0) + 2 \cdot F_{o}^{2}}{3}; \quad k, g, \text{ weighting factors.}$$

$${}^{d}\operatorname{GooF} = \sqrt{\frac{\sum(w(F_{o}^{2} - F_{o}^{2})^{2})}{(n - p)}}; \quad n, \text{ no. of reflections, p, no. of parameters.}$$

$${}^{e}R_{int} = 100x \frac{\sum F_{o}^{2} - \overline{F}_{o}^{2}}{\sum F_{o}^{2}}.$$

 $\sum (F_o - F_c)$

a n

culations of the effective coordination numbers (21) yield CN(Ca1) = 5.80 and CN(Ca2) = 6.02. The local coordinations are displayed in Fig. 3. They can be classified as distorted octahedra of F and N atoms and a varying secondary coordination of the boron atoms. The boron atoms, though significantly coordinated, have only calcium atoms at larger distances (Table 3).

The coordination of the nitrogen atoms of the BN_2^{3-} group, however, is quite different due to the highly anisotropic and unflexible form of this moiety. Qualitatively, the observed differences seem to be reasonable. The less coordinated N1 atom shows a significantly shorter N–B distance than the other. The Ca₄F tetrahedra are relatively irregular because of the discrimination of the calcium ligands into connecting and terminal ones, with Ca–F distances of

245 pm as well as 2×234 and 237 pm, respectively. The large difference of about 10 pm is obviously a result of the size differences of the three types of ions in the structure, which becomes clearer by comparison with the strontium compound with Sr–F distances of 2×247 pm and 2×253 pm which more or less shows the same general arrangement and coordination numbers. The distortion of the Sr₄F tetrahedron is markedly smaller, but the different nitrogen coordinations are still observed. This is a consequence of the way the BN₂³⁻ rod coordinates the M_4 polyhedra: One end points to a vertex and the other is surrounded by three vertices of three different tetrahedra. This seems to be a prefered structural solution close to the compositions $M_m(BN_2)X_n$ with m = 2,3 and n = 1,2 because the same type of anisotropic coordination is found not only in the

Atom	Site	x	у	Ζ	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$U_{ m eq}$
Ca1	4 <i>c</i>	0.0250(1)	1/4	0.1568(1)	15(1)	12(1)	12(1)	0	0(1)	0	13(1)
Ca2	4c	0.6752(1)	1/4	0.9742(1)	12(1)	14(1)	14(1)	0	0(1)	0	14(1)
F1	4c	0.4591(2)	1/4	0.1048(2)	17(1)	15(1)	16(1)	0	-1(1)	0	22(1)
N1	4c	0.8220(3)	1/4	0.7813(2)	18(1)	13(1)	16(1)	0	0(1)	0	16(1)
N2	4c	0.1532(2)	1/4	0.9538(2)	17(1)	15(1)	15(1)	0	-2(1)	0	16(1)
B1	4c	0.1532(2)	1/4	0.8240(3)	17(1)	7(2)	15(1)	0	- 5(1)	0	13(1)
Sr1	4c	0.0261(1)	1/4	0.1617(1)	16(1)	11(1)	5(1)	0	0(1)	0	11(1)
Sr2	4c	0.6763(1)	1/4	0.9804(1)	15(1)	11(1)	9(1)	0	-1(1)	0	12(1)
F1	4c	0.4525(7)	1/4	0.1002(6)	19(4)	11(4)	8(3)	0	5(3)	0	13(2)
N1	4c	0.8180(12)	1/4	0.7689(10)	15(6)	17(6)	17(6)	0	-4(5)	0	16(3)
N2	4c	0.1482(11)	1/4	0.9335(9)	18(6)	12(6)	7(5)	0	3(5)	0	12(2)
B1	4 <i>c</i>	0.2279(16)	1/4	0.8298(14)							14(3)
Ca1	4c	0.0896(1)	1/4	0.6090(1)	18(1)	17(1)	21(1)	0	-2(1)	0	19(1)
Ca2	4c	0.6697(1)	1/4	0.4503(1)	19(1)	17(1)	24(1)	0	1(1)	0	20(1)
Cl1	4c	0.4388(1)	1/4	0.3474(1)	22(1)	22(1)	22(1)	0	-1(1)	0	22(1)
N1	4c	0.2865(5)	1/4	0.6846(5)	19(2)	18(3)	23(2)	0	-3(2)	0	20(1)
N2	4c	0.8776(4)	1/4	0.5434(4)	22(2)	18(3)	17(2)	0	-2(2)	0	19(1)
B1	4 <i>c</i>	0.3353(5)	1/4	0.8189(6)	19(2)	10(3)	24(3)	0	2(2)	0	18(1)
Sr1	4c	0.0874(1)	1/4	0.6177(1)	19(1)	34(1)	29(1)	0	-1(1)	0	27(1)
Sr2	4c	0.6701(1)	1/4	0.4417(1)	19(1)	35(1)	43(1)	0	0(1)	0	29(1)
Cl1	4c	0.4381(2)	1/4	0.3552(2)	23(1)	40(1)	31(1)	0	-1(1)	0	32(1)
N1	4c	0.2856(5)	1/4	0.6982(7)	23(4)	35(4)	36(4)	0	-3(3)	0	31(2)
N2	4c	0.8776(5)	1/4	0.5376(7)	28(4)	39(4)	26(4)	0	-1(3)	0	31(2)
B 1	4 <i>c</i>	0.3336(7)	1/4	0.8278(11)	16(4)	40(5)	34(5)	0	11(4)	0	30(2)

TABLE 2Atomic Coordinates and Equivalent Anisotropic Displacement Parameters (Å²×10³) for Ca₂BN₂F, Sr₂BN₂F, Ca₂BN₂Cl,
and Sr,BN₂Cl

Note. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + \cdots + 2 hka^* b^* U_{12}]$. All the positions are fully occupied.

chlorides M_2BN_2Cl which will be discussed in the next section but also in the compounds M_3CBNX_2 (X = Cl, Br) which have been reported earlier (13, 14). For the latter case it was the polar CBN unit found to have a threefold M coordination at the nitrogen site and a 1 + 4 coordination of M around carbon. However, no indication was given by the authors of how they discriminated between carbon and nitrogen in the CBN unit and this is even more problematic if one considers the somewhat unusual displacements given. To check whether there is a distinct difference between the two terminal sites in the rod group we have analyzed the corresponding point potentials on the basis of lattice energy calculations. The results will be discussed in a later section.

In the [010] projection each of the tetrahedra strands has the shape of a rhomb and its four Ca–Ca vertices are coordinated by four of the linear BN_2^{3-} anions. This gives rise to a nearly tetragonal pattern which is distorted to orthorhombic symmetry by the shape of the rhombs (Fig. 2). A similar building principle is found for the chlorides of the same nominal composition M_2BN_2Cl , which, however, are distinct by the Cl coordination.

The Chlorides M_2BN_2Cl

The structures of the Ca and the Sr compounds are isotypic like those of the fluorides and only minor differences do occur on changing the cations. The main distinction between fluorides and chlorides is the quadratic pyramidal coordination of the chlorine atoms giving rise to CN = 5 instead of CN = 4. In addition, the relative difference of the distances leads to a more pronounced orthorhombic distortion than for the fluorides. The local coordinations shown in Fig. 3 reveal the distorted octahedral coordinations of the cations of the types $Cl_2(BN_2)_4M$ and $Cl_3(BN_2)_3M$, respectively (Table 4). The different structures found so far seem to indicate that rod-like anions similar to BN_2^{3-} are quite versatile structural entities which allow for a large variety of different arrangements. This is found to be true not only for double salts with halogens of different kinds (4) but also for more complicated triple salts like $Ca_{15}(CBN)_6(C_2)_2O$ (16) and there may be even more complex ones to be found in the future.

FIG. 3. Local coordinations in Ca_2BN_2X (X = F, Cl) (24).

 TABLE 3

 Bond Lengths [pm] for Ca2BN2F and Sr2BN2F

Atom –	Paar	d	n	Atom – Paar	d	п
Ca1 – – –	N1 F1 N2 N2	238.4(2) 245.2(2) 249.7(3) 261.8(2)	2	Sr1 – F1 – N1 – N2 – N2	253.4(6) 258.6(7) 262.1(9) 277.7(7)	2 2
Ca2 – – – –	F1 N1 F1 N2	233.8(1) 234.8(2) 237.3(2) 257.3(2)	2 2	Sr2 – F1 – F1 – N1 – N2	247.2(4) 252.6(7) 257(1) 275.8(7)	2 2
F1 - 0 - 0	Ca2 Ca2 Ca1	233.8(1) 237.3(2) 245.2(2)	2	F1 - Sr2 - Sr2 - Sr1	247.2(4) 252.6(7) 253.4(6)	2
N1	B1 Ca2 Ca1 N2 F1	131.6(4) 234.8(2) 238.4(2) 266.2(3) 323.5(2)	2 2	N1 – B1 – Sr2 – Sr1 – N2 – F1	134(2) 257(1) 258.6(7) 266(1) 345(1)	2 2
N2 - - 0 - 0	B1 Ca1 Ca2 Ca1	134.7(4) 249.7(3) 257.3(2) 261.8(2)	2 2	N2 - B1 - Sr1 - Sr2 - Sr1	132(2) 262.1(9) 275.8(7) 277.7(7)	2 2
B1 - - - - - - -	N1 N2 Ca2 Ca1 Ca2	131.6(4) 134.7(4) 283.7(2) 301.5(3) 302.2(3)	2 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	132(1) 134(1) 291(1) 318(1) 320(1)	2 2

 TABLE 4

 Bond Lengths [pm] for Ca2BN2Cl and Sr2BN2Cl

Aton	n – Paar	d	п	Atom – Paar	d	n
Ca1	- N1 - N2 - N2 - Cl1	239.3(4) 240.8(2) 254.0(4) 290.9(1)	2	Sr1 – N2 – N1 – N2 – Cl1	255.8(4) 256.8(4) 270.5(7) 302.9(2)	2
Ca2	- N1 - N2 - B1 - Cl1	234.7(2) 256.3(4) 283.0(6) 284.5(2) 294.6(1)	2	Sr2 - N1 $- N2$ $- B1$ $- Cl1$	250.5(4) 272.1(7) 293.0(9) 298.6(2)	2
Cl1	- C11 - Ca2 - Ca1 - Ca2	294.6(1) 284.5(1) 290.9(1) 294.6(1)	2 2 2	C11 - Sr2 - Sr1 - Sr2	298.6(2) 302.9(2) 309.9(2)	2 2 2
N1	- B1 - Ca2 - Ca1	133.2(7) 234.7(2) 239.3(4)	2	N1 – B1 – Sr2 – Sr1	133(1) 250.5(4) 256.7(7)	2
N2	 B1 Ca1 Ca1 Ca1 	132.9(6) 240.8(2) 254.0(4) 256.3(4)	2	$\begin{array}{rrrr} N2 & - & B1 \\ & - & Sr1 \\ & - & Sr1 \\ & - & Sr1 \end{array}$	135(1) 255.8(4) 270.5(7) 272.3(7)	2
B1	- N2 - N1 - Ca2 - Ca1 - Ca2	132.9(7) 133.2(7) 283.0(6) 303.4(6) 310.1(5)	2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	133(1) 135(1) 293.0(8) 318.9(9) 323.0(7)	2

Geometry of BN_2^{3-} Anions

The cumulated double bonds in the 16*e* systems impose a strong linear component onto the conformation of such units. Still, packing requirements and cation–anion interactions induce some distortion which may be taken to be significant. The geometric variations of the hitherto known compounds with such linear anions have been discussed in a recent work of von Schnering *et al.* (12). The variations that we find for the four compounds presented here are in the medium range of distortions. The B–N distances vary between 131.6 and 135.0 pm. According to Pauling's bondlength–bond-strength relation this corresponds to a change

TABLE 5 Angles [deg] for M_2 BN₂X

	Atoms	Angles	
Ca_2BN_2F	N2-B1-N1	177.0(3)	
Sr_2BN_2F	N2-B1-N1	175(1)	
Ca ₂ BN ₂ Cl	N1-B1-N2	176.5(3)	
Sr ₂ BN ₂ Cl	N1-B1-N2	177.2(8)	

FIG. 4. Measured infrared absorption spectra of M_2BN_2X : (A) spectrum of Ca₂BN₂F; (B) spectrum of Sr₂BN₂F; (C) spectrum of Ca₂BN₂Cl; (D) spectrum of Sr₂BN₂Cl.

of about 11% in strength. The angles vary between 177.2° and 175° and the deviations are fairly small compared to other novel BN_2^{3-} containing phases (4) (Table 5).

The infrared absorption spectra of the four compounds are displayed in Fig. 4. Compounds containing $BN_2^{3^-}$ units show the following Raman (R) and Infrared (IR) absorption bands according to the symmetry representations:

$$\begin{split} \Gamma_{\text{vib}} \left(D_{\infty h} \right) &= \Sigma_g(\mathbf{R}) + \Sigma_u(\mathbf{IR}) + \Pi_u(\mathbf{IR}) \\ \Gamma_{\text{vib}} \left(C_{2v} \right) &= 2A_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR}). \end{split}$$

The v_1 absorption was somewhat controversial, as discussed in (12), for the compounds LiMgBN₂ and Ba₄(BN₂)₂O. The

TABLE 6Vibration Frequences from $M_2 BN_2 X$ (M = Ca, Sr; X = F, Cl)

Compound	$v_3(^{11}B)$	$v_3(^{11}B)$	$v_3(^{10}B)$	v_1	$v_2(^{11}B)$	$v_2(^{10}B)$
Ca ₂ BN ₂ F	603	623	645	1062	1705	1764
Sr_2BN_2F	600	616	638	1044	1670	1725
Ca ₂ BN ₂ Cl	581	626	646	1055	1690	1739
Sr ₂ BN ₂ Cl	582	617	638	1036	1620	1708

measured infrared absorption bands v_1 (Table 6) for our compounds clearly reveal a symmetry reduction from $D_{\infty h}$ to C_{2v} .

Lattice Energy Calculations

 BN_2^{3-} -containing compounds may be understood as typical ionic compounds. The lattice energies, Madelung factors, and point potentials were calculated using the program MADKUG (22) which utilizes an Ewald procedure (Table 7). For the calculation of all the Madelung factors a reference distance of 2.5 Å was used. The calculation of the Madelung parts of lattice energy (MAPLE) under assumption of the formal charges shows that the energy per unit charge is high compared to rocksalt, the most favorable structure for a binary salt. A polarization can be found by comparing the point potentials (Table 8) for the different N positions. The point potentials of N2 are significantly higher than for N1, showing that the coordination of the nitrogen atoms generates polar BN_2^{3-} groups. The difference of the nitrogen-point potentials for the two different nitrogen atoms in the nitridoborate anions indicates that electrostatic and packing effects may well account for significant distortions of the ideally linear N=B=N³⁻ groups. Despite the fact that some coordination environments change markedly on changing from the fluorides to the chlorides, e.g., those of N1 and N2, it is interesting to note that the reduction of the coordination of N2 from six to five does not lower significantly the corresponding point potentials (Table 8), because the change in the number of neighbors is overcompensated by the reduction of mean cation-anion distance. As a consequence the contribution of the BN_2^{3-} groups to the electrostatic energy is higher for the chlorides than for the fluorides. We thus assume chloride salt melts may be better solvents for BN_2^{3-} -containing compounds than corresponding fluoride melts. The point potentials of the boron positions are close to zero because of the two close negatively charged nitrogen neighbors. This does

TABLE 7Results of Lattice Energy Calculations (MAPLE1) for BN_2^{3-} -Containing Compounds and Double Salts (22)

Compound	Madelung factor	Sum of the square charge	MAPLE (kJ/mol) ¹
$Sr_3(BN_2)_2$	10.520	18	325
$LiSr_4(BN_2)_3$	15.576	26	333
Ca_2BN_2F	8.423	12	390
Sr_2BN_2F	7.900	12	359
Ca ₂ BN ₂ Cl	7.929	12	367
Sr ₂ BN ₂ Cl	7.519	12	348
Ca ₃ CBNCl ₂	12.604	20	350
Sr ₃ CBNCl ₂	11.956	20	332
NaCl	1.96	2	445

¹ MAPLE was divided by the sum of the squares of charges for comparison.

 TABLE 8

 Electrostatic Point Potentials P (a.u.), First Coordination Numbers (CN), and Mean Coordination Distances \overline{d} (pm)

Compound	<i>P</i> (<i>M</i> 1)	$CN/\overline{d}(M1)$	<i>P</i> (<i>M</i> 2)	$CN/\overline{d}(M2)$	P(X)	$CN/\overline{d}(X)$	<i>P</i> (N1)	$CN/\overline{d}(N1)$	<i>P</i> (N2)	$CN/\overline{d}(N2)$	<i>P</i> (B1)	$CN/\overline{d}(\mathrm{B1})$
Ca ₂ BN ₂ F	-1.202	6/249.2	-1.310	6/242.4	0.778	4/237.5	0.403	4/211.1	0.531	6/237.1	-0.004	5/294.5
Sr ₂ BN ₂ F	-1.133	6/264.7	-1.250	6/259.3	0.749	4/250.1	0.327	4/227.1	0.418	6/250.2	-0.059	5/307.6
Ca ₂ BN ₂ Cl	-1.138	6/259.5	-1.224	7/268.9	0.655	5/291.1	0.425	4/210.5	0.500	5/225.0	-0.040	4/301.7
Sr ₂ BN ₂ Cl	-1.090	6/274.1	-1.173	7/283.5	0.638	5/304.8	0.356	4/222.7	0.425	5/237.9	-0.067	4/314.5

TABLE 9Electrostatic Point Potentials P for M_3 CBNCl₂ (M = Ca, Sr)

Compound	<i>P</i> (<i>M</i> 1)	<i>P</i> (<i>M</i> 2)	<i>P</i> (<i>M</i> 3)	<i>P</i> (Cl1)	P(C12)	$P(\mathbf{C})$	$P(\mathbf{B})$	$P(\mathbf{N})$
Ca ₃ CBNCl ₂	-1.212 -1.212	-1.201 -1.201	-1.206 -1.206	0.680 0.680	0.714 0.714	1.006 0.561	-0.223 -0.257	0.426 0.866
Sr ₃ CBNCl ₂	-1.157 -1.157	-1.134 -1.134	-1.203 - 1.203	0.639 0.639	0.687 0.687	0.889 0.449	-0.243 - 0.275	0.373 0.809

not necessarily mean that there is only weak electrostatic interaction between boron atoms and cations but the distance already shows that it must be somewhat weaker than the nitrogen-cation pairs. This is supported by the observation that there is no real side-on coordination of BN_2^{3-} groups to cations in these compounds. For the compounds Ca₃CBNCl₂ and Sr₃CBNCl₂ Meyer et al. have given distinct sites for the carbon and nitrogen atoms obviously on the basis of the (C, N)–B distances which are slightly smaller for the B–N contacts (d(B-N) = 138(1)) and 139.3(15) pm; d(B-C) = 144(2) and 143.6(15) pm for the two compounds). Because of the anisotropic displacement parameters we applied a riding model to correct the distances (25) (d(B-N) = 139.7 and 138.8 pm; d(B-C) = 144.7and 144.5 pm, respectively). This means that a small difference in distances still remains after the correction. Furthermore, we have performed lattice energy calculations employing formal charges, e.g., Ca^{2+} , Sr^{2+} , Cl^- , $C^{2-}-B^--N^-$ (Table 9). Local point potentials and MAPLE (22) reveal that in the electrostatic picture the distribution of nitrogen and carbon atoms given by Meyer et al. is slightly more favorable than the inverse distribution. Thus, it seems that the published distribution is correct.

ACKNOWLEDGMENT

This work was supported by the swiss national science foundation under Project 20-43-228.95.

REFERENCES

- 1. J. Goubeau and W. Anselment, Z. Anorg. Allg. Chem. 310, 248 (1961).
- H. Yamane, S. Kikkiawa, and M. Koizumi, J. Solid State Chem. 71, 1 (1987).
- J. Evers, M. Münsterkötter, G. Oehlinger, K. Polborn, and B. Sendlinger, J. Less-Com. Met. 162, L17 (1990).
- 4. F. E. Rohrer, Dissertation, ETH Zürich, in preparation.

- M. Somer, U. Herterich, J. Curda, K. Peters, and H. G. von Schnering, Z. Kristallogr. 209, 182 (1994).
- M. Somer, U. Herterich, J. Curda, K. Peters, and H. G. von Schnering, Z. Kristallogr. 54, 211 (1996).
- 7. M. Somer, personal communication.
- M. Somer, U. Herterich, J. Curda, K. Peters, and H. G. von Schnering, Z. Kristallogr. 209, 618 (1994).
- M. Somer, U. Herterich, J. Curda, K. Peters, and H. G. von Schnering, Z. Kristallogr. 210, 529 (1995).
- 10. M. Wörle, Dissertation, ETH Zürich, 1995.
- U. Herterich, J. Curda, K. Peters, M. Somer, and H. G. von Schnering, Z. Kristallogr. 209, 617 (1994).
- J. Curda, U. Herterich, M. Somer, K. Peters, and H. G. von Schnering, Z. Kristallogr. 209, 181 (1994).
- 13. H.-J. Meyer, Z. Anorg. Allg. Chem. 594, 113 (1991).
- 14. H. Womelsdorf and H.-J. Meyer, Z. Anorg. Allg. Chem. 620, 258 (1994).
- M. Somer, U. Herterich, J. Curda, W. Carrillo-Cabrera, K. Peters, and H. G. von Schnering, Z. Anorg. Allg. Chem. 623, 18 (1997).
- 16. M. Wörle, Dissertation, ETH Zürich, 1995.
- G. Menzer, Z. Kristallogr. Kristallgeom. Kristallphy. Kristallchem. 63, 157 (1926).
- F. E. Rohrer and R. Nesper, SGK Newsletter 42, Abstract No. SGK-12 (1996). [Annual Meeting of the Schweizerische Gesellschaft f
 ür Kristallographie, Z
 ürich]
- 19. F. E. Rohrer and R. Nesper, Chimia 51, 390 (1997).
- G. M. Sheldrick, "SHELXL93, A Program for the Refinement of Crystal Structures," Univ. Göttingen, 1993.
- K. Wohlfahrt, B. Neukäter, H. G. von Schnering, "KVEXPOL, A Program for the Calculation of the Void Positions in Crystal Structures," University of Münster 1967; R. Nesper, updated version, ETH Zürich, 1991, unpublished.
- 22. R. Nesper, G. Roch, W. Neukäter, and H. G. von Schnering, "MADKUG, A Program for the Calculation of Lattice Energies, Madelung Factors, and Point Potentials," University of Münster, 1962; R. Nesper, updated versions, Max-Planck-Institut für Festkörperforschung Stuttgart 1984, Eidgenössische Technische Hochschule, Zürich, 1993.
- P. Hofmann and R. Nesper, "COLTURE, Interactive Visualisation of Solid State Structures," ETH Zürich, 1995.
- C. K. Johnson, "ORTEP II, Thermal Ellipsoid Program," Oak Ridge National Laboratory, Oak Ridge, Tennesse, 1976.
- W. R. Busing, K. O. Martin, and H. A. Levy, "ORFFE, Crystallographic Function and Error Program," Oak Ridge National Laboratory, Tennesse, 1971.